
SO
LU
TI
O
NS

CMU 18-447 Introduction to Computer Architecture, Spring 2013

Midterm Exam 1
Date: Wed., 3/6

Instructor: Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

Name:

Legibility & Name (5 Points):

Problem 1 (65 Points):

Problem 2 (25 Points):

Problem 3 (20 Points):

Problem 4 (40 Points):

Problem 5 (40 Points):

Problem 6 (40 Points):

Problem 7 (35 Points):

Bonus (45 Points):

Total (270 + 45 Points):

Instructions:

1. This is a closed book exam. You are allowed to have one letter-sized cheat sheet.

2. No electronic devices may be used.

3. This exam lasts 1 hour and 50 minutes.

4. Clearly indicate your final answer for each problem.

5. Please show your work when needed.

6. Please write your initials at the top of every page.

7. Please make sure that your answers to all questions (and all supporting work that is required)
are contained in the space required.

Tips:

• Be cognizant of time. Do not spend to much time on one question.

• Be concise. You will be penalized for verbosity.

• Show work when needed. You will receive partial credit at the instructors’ discretion.

• Write legibly. Show your final answer.

Initials:

1. Potpourri [65 points]

(a) Full Pipeline [6 points]

Keeping a processor pipeline full with useful instructions is critical for achieving high performance.
What are the three fundamental reasons why a processor pipeline cannot always be kept full?

Reason 1. Data dependences

Reason 2. Control flow dependences

Reason 3. Resource contention

(b) Exceptions vs. Interrupts [9 points]

In class, we distinguished exceptions from interrupts. Exceptions need to be handled when de-
tected by the processor (and known to be non-speculative) whereas interrupts can be handled
when convenient.

Why does an exception need to be handled when it is detected? In no more than 20 words, please.

The running program cannot continue if the exception is not immediately handled.

What does it mean to handle an interrupt “when it is convenient”?

The processor can handle the interrupt at any time.

Why can many interrupts be handled “when it is convenient”?

They are not needed for the running program’s progress and not critical for system
progress.

2/30

Initials:

(c) Branch Target Buffer [5 points]

What is the purpose of a branch target buffer (in no more than 10 words, please)?

A BTB caches the target of a branch.

What is the downside of a design that does not use a branch target buffer? Please be concrete
(and use less than 20 words).

Determining the branch target would cause bubbles in the pipeline.

(d) Return Address Prediction [4 points]

In lecture, we discussed that a return address stack is used to predict the target address of a return
instruction instead of the branch target buffer. We also discussed that empirically a reasonably-
sized return address stack provides highly accurate predictions.

What key characteristic of programs does a return address stack exploit?

Usually, a return matches a function call.

Assume you have a machine with a 4-entry return address stack, yet the code that is executing
has six levels of nested function calls each of which end with an appropriate return instruction.
What is the return address prediction accuracy of this code?

4
6

(e) Restartable vs. Precise Interrupts [6 points]

As we discussed in one of the lectures, an exception (or interrupt) is “restartable” if a (pipelined)
machine is able to resume execution exactly from the state when the interrupt happened and
after the exception or interrupt is handled. By now you also should know what it means for an
interrupt to be precise versus imprecise.

Can a pipelined machine have restartable but imprecise exceptions or interrupts?

Yes.

3/30

Initials:

What is the disadvantage of such a machine over one that has restartable and precise exceptions
or interrupts? Explain briefly.

It would be hard to debug code running on such a machine. Restartable exceptions do
not ease debugging.

(f) Segmentation and Paging [4 points]

In segmentation, translation information is cached as part of the Segment selector

. In paging, translation information is cached in the TLB .

(g) Out-of-Order vs. Dataflow [8 points]

When does the fetch of an instruction happen in a dataflow processor?

When all inputs to the instruction are ready.

When does the fetch of an instruction happen in an out-of-order execution processor?

When the program counter points to that instruction.

In class, we covered several dataflow machines that implemented dataflow execution at the ISA
level. These machines included a structure/unit called the “matching store.” What is the function
of the matching store (in less than 10 words)?

Determines whether a dataflow node is ready to fire.

What structure accomplishes a similar function in an out-of-order processor?

Reservation stations.

4/30

Initials:

(h) Tomasulo’s Algorithm [5 points]

Here is the state of the reservation stations in a processor during a particular cycle (× denotes an
unknown value):

ADD Reservation Station
Tag V Tag Data V Tag Data
A 0 D × 1 × 27
B 1 × 3 0 E ×
C 0 B × 0 A ×
× × × × × × ×

MUL Reservation Station
Tag V Tag Data V Tag Data
D 0 B × 0 C ×
E 1 × 16 0 B ×

What is wrong with this picture?

Cyclical dependences between instructions, which leads to deadlock. (Between tags B
and E, and also between tags A, D, and C.)

(i) Minimizing Stalls [10 points]

In multiple lectures, we discussed how the compiler can reorder instructions to minimize stalls
in a pipelined processor. The goal of the compiler in these optimizations is to find independent
instructions to place in between two dependent instructions such that by the time the consumer
instruction enters the pipeline the producer would have produced its result.

We discussed that control dependences get in the way of the compiler’s ability to reorder instruc-
tions. Why so?

At compile time, the compiler does not know whether control dependences are taken or
not during execution. Hence, it does not know if an instruction can be moved above or
below a branch.

What can the compiler do to alleviate this problem? Describe two solutions we discussed in class.

Solution 1. Predication. Eliminating branches solves the problem.

Solution 2.
Superblock or trace scheduling. The compiler profiles the code and deter-
mines likely branch directions and optimizes the instruction scheduling on
the frequently executed path.

5/30

Initials:

What is the major disadvantage or limitation of each solution?

Solution 1. Wasted instructions, ISA changes

Solution 2. Profile may not be accurate

(j) Tomasulo’s Algorithm Strikes Back [8 points]

You have a friend who is an architect at UltraFastProcessors, Inc. Your friend explains to you
how their newest out-of-order execution processor that implements Tomasulo’s algorithm and that
uses full data forwarding works:

“After an instruction finishes execution in the functional unit, the result of the instruction is
latched. In the next cycle, the tag and result value are broadcast to the reservation stations.
Comparators in the reservation stations check if the source tags of waiting instructions match the
broadcast tag and capture the broadcast result value if the broadcast tag is the same as a source
tag.”

Based on this description, is there an opportunity to improve the performance of your friend’s
design? Circle one:

YES NO

If YES, explain what type of code leads to inefficient (i.e., lower performance than it could be)
execution and why. (Leave blank if you answered NO above.)

Tag and result broadcast is delayed by a cycle, thus delaying the execution of dependent
instructions.

If YES, explain what you would recommend to your friend to eliminate the inefficiency. (Leave
blank if you answered NO above.)

Broadcast the tag and result as soon as an instruction finishes execution.

If NO, justify how the design is as efficient as Tomasulo’s algorithm with full data forwarding can
be. (Leave blank if you answered YES above.)

BLANK

If NO, explain how the design can be simplified. (Leave blank if you answered YES above.)

BLANK

6/30

Initials:

2. Branch Prediction and Dual Path Execution [25 points]

Assume a machine with a 7-stage pipeline. Assume that branches are resolved in the sixth stage.
Assume that 20% of instructions are branches.

(a) How many instructions of wasted work are there per branch misprediction on this machine?

5 instructions.

(b) Assume N instructions are on the correct path of a program and assume a branch predictor
accuracy of A. Write the equation for the number of instructions that are fetched on this machine
in terms of N and A. (Please show your work for full credit.)

Note that if you assumed the wrong number of instructions in Part (a), you will only be
marked wrong for this in Part (a). You can still get full credit on this and the following
parts.

Correct path instructions = N
Incorrect path instructions = N(0.2)(1−A)5 = N(1−A)

Fetched instructions = Correct path instructions + Incorrect path instructions
= N + N(1−A)

= N(2−A)

(c) Let’s say we modified the machine so that it used dual path execution like we discussed in class
(where an equal number of instructions are fetched from each of the two branch paths). Assume
branches are resolved before new branches are fetched. Write how many instructions would be
fetched in this case, as a function of N . (Please show your work for full credit.)

Correct path instructions = N
Incorrect path instructions = N(0.2)5

Fetched instructions = Correct path instructions + Incorrect path instructions
= N + N(1− 0.8)5

= 2N

This solution assumes you have enough hardware in the frontend of the machine to
fetch concurrently from both paths. If you assumed that both paths are fetched from on
alternate cycles, that high-level approach is also OK, although note that you would need
additional branch taken and not taken information to solve it completely.

7/30

Initials:

(d) Now let’s say that the machine combines branch prediction and dual path execution in the fol-
lowing way:

A branch confidence estimator, like we discussed in class, is used to gauge how confident the
machine is of the prediction made for a branch. When confidence in a prediction is high, the
branch predictor’s prediction is used to fetch the next instruction; When confidence in a prediction
is low, dual path execution is used instead.

Assume that the confidence estimator estimates a fraction C of the branch predictions have high
confidence, and that the probability that the confidence estimator is wrong in its high confidence
estimation is M .

Write how many instructions would be fetched in this case, as a function of N , A, C, and M .
(Please show your work for full credit.)

Correct path instructions = N
Incorrect path instructions due to. . .

lack of confidence
= N(0.2)(1− C)5 = N(1− C)

incorrect high confidence estimate
= N(0.2)CM5 = NCM

Fetched instructions = Correct path instructions
+ Incorrect path instructions due to

lack of confidence
+ Incorrect path instructions due to

incorrect high confidence estimate
= N + N(1− C) + NCM

= N [2 + C(M − 1)]

Like above, if you assumed a different execution model for Part (c), you will not be
penalized for using it in this part.

8/30

Initials:

3. Dataflow [20 points]

Here is a dataflow graph representing a dataflow program:

copy

AND

F T

>0?

copy
T F

output
NOT

false

The following is a description of the nodes used in the dataflow graph:

- subtracts right input from left input
AND bit-wise AND of two inputs
NOT the boolean negation of the input (input and output are both boolean)
BR passes the input to the appropriate output corresponding to the boolean condition
copy passes the value from the input to the two outputs
>0? true if input greater than 0

Note that the input X is a non-negative integer.

What does the dataflow program do? Specify clearly in less than 15 words.

Calculates the parity of X. (True if the number of set bits in X is odd and false otherwise.)

9/30

Initials:

4. Mystery Instruction [40 points]

That pesky engineer implemented yet another mystery instruction on the LC-3b. It is your job to
determine what the instruction does. The mystery instruction is encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010 DR SR1 0 0 0 0 0 0

The modifications we make to the LC-3b datapath and the microsequencer are highlighted in the
attached figures (see the next two pages). We also provide the original LC-3b state diagram, in case
you need it. (As a reminder, the selection logic for SR2MUX is determined internally based on the
instruction.)

The additional control signals are

GateTEMP1/1: NO, YES

GateTEMP2/1: NO, YES

LD.TEMP1/1: NO, LOAD

LD.TEMP2/1: NO, LOAD

ALUK/3: OR1 (A|0x1), LSHF1 (A<<1), PASSA, PASS0 (Pass value 0), PASS16 (Pass value 16)

COND/4:
COND0000 ;Unconditional
COND0001 ;Memory Ready
COND0010 ;Branch
COND0011 ;Addressing mode
COND0100 ;Mystery 1
COND1000 ;Mystery 2

The microcode for the instruction is given in the table below.

State Cond J Asserted Signals
001010 (10) COND0000 001011 ALUK = PASS0, GateALU, LD.REG,

DRMUX = DR (IR[11:9])
001011 (11) COND0000 101000 ALUK = PASSA, GateALU, LD.TEMP1,

SR1MUX = SR1 (IR[8:6])
101000 (40) COND0000 110010 ALUK = PASS16, GateALU, LD.TEMP2
110010 (50) COND1000 101101 ALUK = LSHF1, GateALU, LD.REG,

SR1MUX = DR, DRMUX = DR (IR[11:9])
111101 (61) COND0000 101101 ALUK = OR1, GateALU, LD.REG,

SR1MUX = DR, DRMUX = DR (IR[11:9])
101101 (45) COND0000 111111 GateTEMP1, LD.TEMP1
111111 (63) COND0100 010010 GateTEMP2, LD.TEMP2

Describe what this instruction does.

Bit-reverses the value in SR1 and puts it in DR.

10/30

Initials:

Code:

State 10: DR ← 0
State 11: TEMP1 ← value(SR1)
State 40: TEMP2 ← 16
State 50: DR = DR << 1

if (TEMP1[0] == 0)
goto State 45

else
goto State 61

State 61: DR = DR | 0x1
State 45: TEMP1 = TEMP1 >> 1
State 63: DEC TEMP2

if (TEMP2 == 0)
goto State 18

else
goto State 50

11/30

Initials:

12/30

Initials:

13/30

Initials: C.4. THE CONTROL STRUCTURE 11DRIR[11:9]111DRMUX(a) SR1SR1MUXIR[11:9]IR[8:6] (b)Logic BENPZNIR[11:9] (c)Figure C.6: Additional logic required to provide control signalsLC-3b to operate correctly with a memory that takes multiple clock cycles to read orstore a value.Suppose it takes memory five cycles to read a value. That is, once MAR containsthe address to be read and the microinstruction asserts READ, it will take five cyclesbefore the contents of the specified location in memory are available to be loaded intoMDR. (Note that the microinstruction asserts READ by means of three control signals:MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)Recall our discussion in Section C.2 of the function of state 33, which accessesan instruction from memory during the fetch phase of each instruction cycle. For theLC-3b to operate correctly, state 33 must execute five times before moving on to state35. That is, until MDR contains valid data from the memory location specified by thecontents of MAR, we want state 33 to continue to re-execute. After five clock cycles,th h l t d th “ d ” lti i lid d t i MDR th
14/30

Initials: C.2. THE STATE MACHINE 5R PC<! BaseR To 1812 To 18To 18RRTo 18To 18 To 18 MDR<! SR[7:0]MDR <! MIR <! MDRRDR<! SR1+OP2*set CCDR<! SR1&OP2*set CC [BEN]PC<! MDR 3215 0 01To 18To 18 To 18R R [IR[15:12]]2830R7<! PCMDR<! M[MAR]set CC BEN<! IR[11] & N + IR[10] & Z + IR[9] & P9DR<! SR1 XOR OP2* 4 22To 111011JSR JMP BR1010 To 10 2120 0 1LDBMAR<! B+off6set CCTo 18 MAR<! B+off6DR<! MDRset CCTo 18MDR<! M[MAR]2527 3762 STW STBLEASHFTRAPXORANDADDRTITo 8set CC set CCDR<! PC+LSHF(off9, 1)14 LDWMAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)PC<! PC+LSHF(off9,1)3335DR<! SHF(SR,A,D,amt4)NOTESB+off6 : Base + SEXT[offset6] RMDR<! M[MAR[15:1]’0]DR<! SEXT[BYTE.DATA]R 2931 18, 19 MDR<! SRTo 18R RM[MAR]<! MDR 1623 R R17To 19 24M[MAR]<! MDR**MAR<! LSHF(ZEXT[IR[7:0]],1)15To 18PC+off9 : PC + SEXT[offset9] MAR <! PCPC <! PC + 2*OP2 may be SR2 or SEXT[imm5]** [15:8] or [7:0] depending onMAR[0] [IR[11]]PC<! BaseRPC<! PC+LSHF(off11,1)R7<! PC R7<! PC13 Figure C.2: A state machine for the LC-3b
15/30

Initials:

5. Virtual Memory [40 points]

Suppose a 32 K×8 K matrix A with 1-byte elements is stored in row major order in virtual memory.
Assume only the program in question occupies space in physical memory. Show your work for full
credit.

Program 1

for (i = 0; i < 32768; i++)
for (j = 0; j < 8192; j++)
A[i][j] = A[i][j] * A[i][j];

Program 2

for (j = 0; j < 8192; j++)
for (i = 0; i < 32768; i++)

A[i][j] = A[i][j] * A[i][j];

(a) If Program 1 yields 8 K page faults, what is the size of a page in this architecture?

A SIZE = 32K × 8K × 1B = 256MB

A SIZE / PAGE SIZE = PAGE FAULTS

PAGE SIZE = A SIZE/PAGE FAULTS = 256MB/8K = 32KB

Assume the page size you calculated for the rest of this question.

(b) Consider Program 2. How many pages should the physical memory be able to store to ensure
that Program 2 experiences the same number of page faults as Program 1 does?

8K page faults is possible only if each page is brought into physical memory exactly
once – i.e., there shouldn’t be any swapping.

Therefore, the physical memory must be large enough to retain all the pages.

PAGE COUNT = A SIZE/PAGE SIZE = 256MB/32K = 8K

(c) Consider Program 2. How many page faults would Program 2 experience if the physical memory
can store 1 page?

32K × 8K / 4 = 64M. The inner loop touches a page four times before moving on to a
different page.

16/30

Initials:

What about if the physical memory can store 4 K pages?

32K × 8K / 4 = 64M. After touching a page four times, the inner loop touches all other
pages (256MB) before coming back to the same page.

(d) Now suppose the same matrix is stored in column-major order. And, the physical memory size is
32 MB.

How many page faults would Program 1 experience?

32K × 8K = 256M. After touching a page just once, the inner loop touches all other
pages (256MB) before coming back to the same page.

How many page faults would Program 2 experience?

8K. The inner loop touches all of a page and never comes back to the same page.

(e) Suppose still that the same matrix is stored in column-major order. However, this time the
physical memory size is 8 MB.

How many page faults would Program 1 experience?

32K × 8K = 256M. After touching a page just once, the inner loop touches all other
pages (256MB) before coming back to the same page.

How many page faults would Program 2 experience?

8K. The inner loop touches all of a page and never comes back to the same page.

17/30

Initials:

6. Future File [40 points]

For this question, assume a machine with the following characteristics:

• Scalar, out-of-order dispatch with a 4-entry reorder buffer, future file, and full data forwarding.

• A 4-stage pipeline consisting of fetch, decode, execute, and writeback.

• Fetch and decode take 1 cycle each.

• Writeback takes 2 cycles and updates the future file and the reorder buffer.

• When the reorder buffer is filled up, fetch is halted.

A program that consists of three instructions: ADD, DIV, LD that have the following semantics:

• ADD Rd ← Rs, Rt: Adds the contents of Rs and Rt and stores the result in Rd.

• DIV Rd ← Rs, Rt: Divides the contents of Rs by the contents of Rt and stores the result in
Rd. Raises an exception if Rt is zero.

• LD Rd← Rs, Rt: Loads the contents of the base memory address Rs at the offset Rt and stores
the result in Rd. Assume that calculated memory addresses are guaranteed to be 4-byte-aligned
and the memory is bit-addressable.

An ADD instruction takes 1 cycle to execute, a DIV instruction takes 3 cycles to execute and a divide-
by-zero exception, if present, is detected during the second cycle, and a LD instruction takes 5 cycles
to execute.

Here is the state of the future file in the machine at the end of the cycle when a divide-by-zero
exception is detected:

Future File
V Value

R1 0 21
R2 1 13
R3 1 0
R4 1 3
R5 1 25
R6 1 1
R7 1 17
R8 1 8
R9 1 9
R10 0 23
R11 1 7
R12 1 19

Using what you know about the reorder buffer and the future file, fill in the missing contents of the
reorder buffer in the machine. Assume reorder buffer entries are allocated from top to bottom in the
diagram.

Reorder Buffer
V Exception? Opcode Rd Rs Rt Dest. Value Dest. Value Ready

Oldest → 1 0 LD R1 R12 R2∗ ? 0
1 0 ADD R4 R3/?↔ R4/R7 3 1
1 0 ADD R7 R8 ↔ R9 17 1

Youngest → 1 1 DIV R10 ? R3 ? 0

18/30

Initials:

∗Note that R12 + R2 = 32, which is a valid 4-byte-aligned, bit addressable address.

19/30

Initials:

7. Branch Prediction [35 points]

Assume the following piece of code that iterates through a large array populated with completely
(i.e., truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4).
When we say that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */
val = array[i]; /* TAKEN PATH for B1 */
if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */
}
if (val % 3 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */
}
if (val % 6 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */
}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

Only B1.

B2, B3, B4 are not locally correlated. Just like consecutive outcomes of a die, an
element being a multiple of N (N is 2, 3, and 6, respectively for B2, B3, and B4) has
no bearing on whether the next element is also a multiple of N .

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

B4 is correlated with B2 and B3. 6 is a common multiple of 2 and 3.

Now assume that the above piece of code is running on a processor that has a global branch predictor.
The global branch predictor has the following characteristics.

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–
1023)

• Before the code is run, all PHTEs are initially set to 0.

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds
to that PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that
corresponds to that PHTE is not taken.

20/30

Initials:

(d) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it
in the shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2
are taken? Given that they are, what is the probability that B3 will increment or decrement the
PHTE? Then consider...

Show your work.

Without loss of generality, let’s take a look at the numbers from 1 through 6. Given
that a number is a multiple of two (i.e., 2, 4, 6), the probability that the number is
also a multiple of three (i.e., 6) is equal to 1/3, let’s call this value Q. Given that a
number is a multiple of two and three (i.e., 6), the probability that the number is also
a multiple of six (i.e., 6) is equal to 1, let’s call this value R.

For a single iteration of the loop, the PHTE has four chances of being increment-
ed/decremented, once at each branch.

• B3’s contribution to PHTE. The probability that both B1 and B2 are taken is denoted
as P(B1 T && B2 T), which is equal to P(B1 T)*P(B2 T) = 1*1/2 = 1/2. Given that
they are, the probability that B3 is taken, is equal to Q = 1/3. Therefore, the PHTE
will be incremented with probability 1/2*1/3 = 1/6 and decremented with probability
1/2*(1-1/3) = 1/3. The net contribution of B3 to PHTE is 1/6-1/3 = -1/6.

• B4’s contribution to PHTE. P(B2 T && B3 T) = 1/6. P(B4 T | B2 T && B3 T) =
R = 1. B4’s net contribution is 1/6*1 = 1/6.

• B1’s contribution to PHTE. P(B3 T && B4 T) = 1/6. P(B1 T | B3 T && B4 T) =
1. B1’s net contribution is 1/6*1 = 1/6.

• B2’s contribution to PHTE. P(B4 T && B1 T) = 1/6*1 = 1/6. P(B2 T | B4 T &&
B1 T) = 1/2. B2’s net contribution is 1/6*1/2 - 1/6*1/2 = 0.

For a single iteration, the net contribution to the PHTE, summed across all the four
branches, is equal to 1/6. Since there are 120 iterations, the expected PHTE value is
equal to 1/6*120=20.

1 0

GHR

O
ld
e
r

Y
o
u
n
g
e
r

PHT

TT

NN

TN

NT

1
st
PHTE

2
nd
PHTE

3
rd
PHTE

4
th
PHTE

21/30

Initials:

8. Bonus (Question 7 Continued) [45 points]

(a) Assume the same question in Part (d) of Question 7. Your job in this question is to fill in the
rest of the PHTEs. In other words, after 120 iterations of the loop in Question 7, calculate the
expected value for the rest of the PHTEs (i.e., PHTEs 2, 3, 4) and fill in the PHT below. (Please
write them as base-10 values, rounded to the nearest one’s digit.)

Show your work.

PHTE2: TN

P(B1 T && B2 N)=1/2. P(B3 T | B1 T && B2 N)=1/3. ∆PHTE=1/2*(1/3-2/3)=-1/6.
P(B2 T && B3 N)=1/3. P(B4 T | B2 T && B3 N)=0. ∆PHTE=1/3*-1=-1/3.
P(B3 T && B4 N)=1/6. P(B1 T | B3 T && B4 N)=1. ∆PHTE=1/6*1=1/6.
P(B4 T && B1 N)=0. P(B2 T | B4 T && B1 N)=X. ∆PHTE = 0.
Answer: 120*(-1/6-1/3+1/6+0)=-40

PHTE3: NT

P(B1 N && B2 T)=0. P(B3 T | B1 N && B2 T)=X. ∆PHTE=0.
P(B2 N && B3 T)=1/6. P(B4 T | B2 N && B3 T)=0. ∆PHTE=1/6*-1=-1/6.
P(B3 N && B4 T)=0. P(B1 T | B3 N && B4 T)=X. ∆PHTE=0.
P(B4 N && B1 T)=5/6. P(B2 T | B4 N && B1 T)=1/2. ∆PHTE=5/6*(1/2-1/2)=0.
Answer: 120*(0-1/6+0+0)=-20

PHTE4: NN

P(B1 N && B2 N)=0. P(B3 T | B1 N && B2 N)=X. PHTE DELTA=0.
P(B2 N && B3 N)=1/3. P(B4 T | B2 N && B3 N)=0. PHTE DELTA=1/3*-1=-1/3.
P(B3 N && B4 N)=2/3. P(B1 T | B3 N && B4 N)=1. PHTE DELTA=2/3*1=2/3.
P(B4 N && B1 N)=0. P(B2 T | B4 N && B1 N)=X. PHTE DELTA = 0.
Answer: 120*(0-1/3+2/3+0) = 40.

1 0

GHR

O
ld
e
r

Y
o
u
n
g
e
r

PHT

TT

NN

TN

NT

1
st
PHTE

2
nd
PHTE

3
rd
PHTE

4
th
PHTE

22/30

Initials:

(b) After the first 120 iterations, let us assume that the loop continues to execute for another 1 billion
iterations. What is the accuracy of this global branch predictor during the 1 billion iterations?
(Please write it as a percentage, rounded to the nearest single-digit.)

Show your work.

Given a history of TT, the number of correct predictions per
iteration =
P(B1 T && B2 T) * P(B3 T | B1 T && B2 T) +
P(B2 T && B3 T) * P(B4 T | B2 T && B3 T) +
P(B3 T && B4 T) * P(B1 T | B3 T && B4 T) +
P(B4 T && B1 T) * P(B2 T | B4 T && B1 T) = 7/12

Given a history of TN, the number of correct predictions per
iteration =
P(B1 T && B2 N) * P(B3 N | B1 T && B2 N) +
P(B2 N && B3 N) * P(B4 N | B2 T && B3 N) +
P(B3 N && B4 N) * P(B1 N | B3 T && B4 N) +
P(B4 N && B1 N) * P(B2 N | B4 T && B1 N) = 2/3

Given a history of NT, the number of correct predictions per
iteration = 7/12

Given a history of NN, the number of correct predictions per
iteration = 2/3

Correct predictions per iteration = 7/12 + 2/3 + 7/12 + 2/3 = 30/12
Branches per iteration = 4
Accuracy = (30/12)/4 = 30/48 = 5/8 = 62.5% = 63%

(c) Without prior knowledge of the contents of the array, what is the highest accuracy that any type
of branch predictor can achieve during the same 1 billion iterations as above? (Please write it as
a percentage, rounded to the nearest single-digit.)

Show your work.

Per-branch accuracy:
B1: 100%
B2: 50% (half the numbers are even)
B3: 33% (a third of the numbers are a multiple of three)
B4: 100% (global correlation)

Average accuracy: 70.8% = 71%

23/30

Initials:

Stratchpad

24/30

Initials:

Stratchpad

25/30

Initials:

Stratchpad

26/30

Initials:

Stratchpad

27/30

Initials:

Stratchpad

28/30

Initials:

Stratchpad

29/30

Initials:

Stratchpad

30/30

	Potpourri [65 points]
	Branch Prediction and Dual Path Execution [25 points]
	Dataflow [20 points]
	Mystery Instruction [40 points]
	Virtual Memory [40 points]
	Future File [40 points]
	Branch Prediction [35 points]
	Bonus (Question 7 Continued) [45 points]

